Package: FunChisq 2.5.4

FunChisq: Model-Free Functional Chi-Squared and Exact Tests

Statistical hypothesis testing methods for inferring model-free functional dependency using asymptotic chi-squared or exact distributions. Functional test statistics are asymmetric and functionally optimal, unique from other related statistics. Tests in this package reveal evidence for causality based on the causality-by- functionality principle. They include asymptotic functional chi-squared tests (Zhang & Song 2013) <doi:10.48550/arXiv.1311.2707>, an adapted functional chi-squared test (Kumar & Song 2022) <doi:10.1093/bioinformatics/btac206>, and an exact functional test (Zhong & Song 2019) <doi:10.1109/TCBB.2018.2809743> (Nguyen et al. 2020) <doi:10.24963/ijcai.2020/372>. The normalized functional chi-squared test was used by Best Performer 'NMSUSongLab' in HPN-DREAM (DREAM8) Breast Cancer Network Inference Challenges (Hill et al. 2016) <doi:10.1038/nmeth.3773>. A function index (Zhong & Song 2019) <doi:10.1186/s12920-019-0565-9> (Kumar et al. 2018) <doi:10.1109/BIBM.2018.8621502> derived from the functional test statistic offers a new effect size measure for the strength of functional dependency, a better alternative to conditional entropy in many aspects. For continuous data, these tests offer an advantage over regression analysis when a parametric functional form cannot be assumed; for categorical data, they provide a novel means to assess directional dependency not possible with symmetrical Pearson's chi-squared or Fisher's exact tests.

Authors:Yang Zhang [aut], Hua Zhong [aut], Hien Nguyen [aut], Ruby Sharma [aut], Sajal Kumar [aut], Yiyi Li [aut], Joe Song [aut, cre]

FunChisq_2.5.4.tar.gz
FunChisq_2.5.4.zip(r-4.5)FunChisq_2.5.4.zip(r-4.4)FunChisq_2.5.4.zip(r-4.3)
FunChisq_2.5.4.tgz(r-4.4-x86_64)FunChisq_2.5.4.tgz(r-4.4-arm64)FunChisq_2.5.4.tgz(r-4.3-x86_64)FunChisq_2.5.4.tgz(r-4.3-arm64)
FunChisq_2.5.4.tar.gz(r-4.5-noble)FunChisq_2.5.4.tar.gz(r-4.4-noble)
FunChisq_2.5.4.tgz(r-4.4-emscripten)FunChisq_2.5.4.tgz(r-4.3-emscripten)
FunChisq.pdf |FunChisq.html
FunChisq/json (API)
NEWS

# Install 'FunChisq' in R:
install.packages('FunChisq', repos = c('https://joemsong.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • c++– GNU Standard C++ Library v3

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

4.37 score 29 scripts 484 downloads 4 mentions 12 exports 6 dependencies

Last updated 6 months agofrom:90eb2fc97b. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 07 2024
R-4.5-win-x86_64OKNov 07 2024
R-4.5-linux-x86_64OKNov 08 2024
R-4.4-win-x86_64OKNov 07 2024
R-4.4-mac-x86_64OKNov 07 2024
R-4.4-mac-aarch64OKNov 07 2024
R-4.3-win-x86_64OKNov 07 2024
R-4.3-mac-x86_64OKNov 07 2024
R-4.3-mac-aarch64OKNov 07 2024

Exports:add.candle.noiseadd.house.noiseadd.noisecond.fun.chisq.testcp.chisq.testcp.fun.chisq.testEFTDPEFTDQPfun.chisq.testplot_tablesimulate_tablestest.interactions

Dependencies:BHdqrngrbibutilsRcppRdpacksitmo

Adapted versus original functional chi-squared tests and conditional entropy

Rendered fromadapted.fun.chisq.test.Rmdusingknitr::rmarkdownon Nov 07 2024.

Last update: 2023-05-25
Started: 2021-05-19

Examples of discrete patterns

Rendered frompatterns.Rmdusingknitr::rmarkdownon Nov 07 2024.

Last update: 2023-05-25
Started: 2018-12-06

Measuring functional dependency model-free

Rendered fromfun.chisq.test.Rmdusingknitr::rmarkdownon Nov 07 2024.

Last update: 2023-05-25
Started: 2016-04-22

Using the exact functional test

Rendered fromexact.fun.test.Rmdusingknitr::rmarkdownon Nov 07 2024.

Last update: 2023-05-25
Started: 2016-05-02