
Package: Ckmeans.1d.dp (via r-universe)
September 8, 2024

Type Package

Title Optimal, Fast, and Reproducible Univariate Clustering

Version 4.3.5

Date 2023-08-19

Author Joe Song [aut, cre] (<https://orcid.org/0000-0002-6883-6547>),
Hua Zhong [aut] (<https://orcid.org/0000-0003-1962-2603>),
Haizhou Wang [aut]

Maintainer Joe Song <joemsong@cs.nmsu.edu>

Description Fast, optimal, and reproducible weighted univariate
clustering by dynamic programming. Four problems are solved,
including univariate k-means (Wang & Song 2011)
<doi:10.32614/RJ-2011-015> (Song & Zhong 2020)
<doi:10.1093/bioinformatics/btaa613>, k-median, k-segments, and
multi-channel weighted k-means. Dynamic programming is used to
minimize the sum of (weighted) within-cluster distances using
respective metrics. Its advantage over heuristic clustering in
efficiency and accuracy is pronounced when there are many
clusters. Multi-channel weighted k-means groups multiple
univariate signals into k clusters. An auxiliary function
generates histograms adaptive to patterns in data. This package
provides a powerful set of tools for univariate data analysis
with guaranteed optimality, efficiency, and reproducibility,
useful for peak calling on temporal, spatial, and spectral
data.

License LGPL (>= 3)

Encoding UTF-8

Imports Rcpp, Rdpack (>= 0.6-1)

LinkingTo Rcpp

NeedsCompilation yes

Suggests testthat, knitr, rmarkdown, RColorBrewer

RdMacros Rdpack

VignetteBuilder knitr

1

https://orcid.org/0000-0002-6883-6547
https://orcid.org/0000-0003-1962-2603
https://doi.org/10.32614/RJ-2011-015
https://doi.org/10.1093/bioinformatics/btaa613

2 Ckmeans.1d.dp-package

Date/Publication 2023-08-19 18:12:31 UTC

Repository https://joemsong.r-universe.dev

RemoteUrl https://github.com/cran/Ckmeans.1d.dp

RemoteRef HEAD

RemoteSha 1f5ef9bdc367d612e4f6657d54664e385700d4d2

Contents
Ckmeans.1d.dp-package . 2
ahist . 4
MultiChannel.WUC . 7
plot.Ckmeans.1d.dp . 9
plot.Cksegs.1d.dp . 10
plot.MultiChannelClusters . 11
plotBIC . 12
print.Ckmeans.1d.dp . 14
print.Cksegs.1d.dp . 15
Univariate Clustering . 16
Univariate Segmentation . 19

Index 23

Ckmeans.1d.dp-package Optimal, Fast, and Reproducible Univariate Clustering

Description

This package provides a powerful set of tools for univariate data analysis with guaranteed opti-
mality, efficiency, and reproducibility. Four problems including univariate k-means, k-median,
k-segments, and multi-channel weighted k-means are solved with guaranteed optimality and re-
producibility. The core algorithm minimizes the (weighted) sum of within-cluster distances using
respective metrics. Its advantage over heuristic clustering in efficiency and accuracy is increasingly
pronounced as the number of clusters k increases. Weighted k-means can also optimally segment
time series to perform peak calling. An auxiliary function generates histograms that are adaptive to
patterns in data.

The Ckmeans.1d.dp algorithm clusters (weighted) univariate data given by a numeric vector x into
k groups by dynamic programming (Wang and Song 2011; Song and Zhong 2020). It guarantees the
optimality of clustering—the total of within-cluster sums of squares is always the minimum given
the number of clusters k. In contrast, heuristic univariate clustering algorithms may be non-optimal
or inconsistent from run to run. As non-negative weights are supported, the algorithm can partition
a time course using time points as input and corresponding values as weight. Based on an optimal
clustering, a function can generate histograms adaptive to patterns in data. The implementation of
this algorithm is numerically stable.

A linear time solution. Excluding the time for sorting x, the weighted univariate clustering al-
gorithm takes a runtime of O(kn) (Song and Zhong 2020), linear in both sample size n and the

Ckmeans.1d.dp-package 3

number of clusters k. The approach was first introduced into version 3.4.9 (not publicly released)
on July 16, 2016, using a new divide-and-conquer strategy integrating a previous theoretical result
on matrix search (Aggarwal et al. 1987) and a novel in-place search space reduction method (Song
and Zhong 2020).

A log-linear time solution. Since version 3.4.6, a divide-and-conquer strategy that is simple to code
reduces the runtime from O(kn2) down to O(kn lg n) (Song and Zhong 2020).

A quadratic time solution. Before version 3.4.6, Ckmeans.1d.dp uses an algorithm that runs in
quadratic runtime O(kn2) (Wang and Song 2011).

A cubic time solution. Bellman (1973) first described a general dynamic programming strategy
for solving univariate clustering problems with additive optimality measures. The strategy, how-
ever, did not address any specific characteristics of the k-means problem and its implied general
algorithm will have a time complexity of O(kn3) on an input of n points.

The space complexity in all cases is O(kn).

This package provides a powerful alternative to heuristic clustering and also new functionality for
weighted clustering, segmentation, and peak calling with guaranteed optimality. It is practical for
Ckmeans.1d.dp to find a few clusters on millions of sample points with optional weights in seconds
using a single core on a typical desktop computer.

Third parties have ported various versions of this package to JavaScript, MATLAB, Python, Ruby,
SAS, and Scala.

Details

The most important function of this package is Ckmeans.1d.dp that implements optimal univari-
ate clustering either weighted or unweighted. It also contains an adaptive histogram function ahist,
plotting functions plot.Ckmeans.1d.dp and plotBIC, and a print function print.Ckmeans.1d.dp.

Disclaimer

This program is free software: you can redistribute it and/or modify it under the terms of the GNU
Lesser General Public License as published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If
not, see https://www.gnu.org/licenses/.

Author(s)

Joe Song, Hua Zhong, and Haizhou Wang

References

Aggarwal A, Klawe MM, Moran S, Shor P, Wilber R (1987). “Geometric applications of a matrix-
searching algorithm.” Algorithmica, 2(1-4), 195–208. doi:10.1007/BF01840359.

https://www.gnu.org/licenses/
https://doi.org/10.1007/BF01840359

4 ahist

Bellman R (1973). “A note on cluster analysis and dynamic programming.” Mathematical Bio-
sciences, 18(3), 311–312. doi:10.1016/00255564(73)900072.

Song M, Zhong H (2020). “Efficient weighted univariate clustering maps outstanding dysregulated
genomic zones in human cancers.” Bioinformatics, 36(20), 5027–5036. doi:10.1093/bioinformatics/
btaa613.

Wang H, Song M (2011). “Ckmeans.1d.dp: Optimal k-means clustering in one dimension by dy-
namic programming.” The R Journal, 3(2), 29–33. doi:10.32614/RJ2011015.

See Also

The kmeans function in package stats that implements several heuristic k-means algorithms.

ahist Adaptive Histograms

Description

Generate or plot histograms adaptive to patterns in univariate data. The number and widths of
histogram bins are automatically calculated based on an optimal univariate clustering of input data.
Thus the bins are unlikely of equal width.

Usage

ahist(x, k = c(1,9), breaks=NULL, data=NULL, weight=1,
plot = TRUE, xlab = deparse(substitute(x)),
wlab = deparse(substitute(weight)),
main = NULL, col = "lavender", border = graphics::par("fg"),
lwd = graphics::par("lwd"),
col.stick = "gray", lwd.stick = 1, add.sticks=TRUE,
style = c("discontinuous", "midpoints"),
skip.empty.bin.color=TRUE,
...)

Arguments

x a numeric vector of data or an object of class "Ckmeans.1d.dp".
If x is a numeric vector, all NA elements must be removed from x before calling
this function.
If x is an object of class "Ckmeans.1d.dp", the clustering information in x will
be used and the data argument contains the numeric vector to be plotted.

k either an exact integer number of bins/clusters, or a vector of length two specify-
ing the minimum and maximum numbers of bins/clusters to be examined. The
default is c(1,9). When k is a range, the actual number of clusters is determined
by Bayesian information criterion. This argument is ignored if x is an object of
class "Ckmeans.1d.dp".

https://doi.org/10.1016/0025-5564%2873%2990007-2
https://doi.org/10.1093/bioinformatics/btaa613
https://doi.org/10.1093/bioinformatics/btaa613
https://doi.org/10.32614/RJ-2011-015

ahist 5

breaks This argument is defined in hist. If this argument is provided, optimal univari-
ate clustering is not applied to obtain the histogram, but instead the histogram
will be generated by the hist function in graphics, except that sticks repre-
senting data can still be optionally plotted by specifying the add.sticks=TRUE
argument.

data a numeric vector. If x is an object of class "Ckmeans.1d.dp", the data argument
must be provided. If x is a numeric vector, this argument is ignored.

weight a value of 1 to specify equal weights or a numeric vector of unequal weights
for each element. The default weight is one. It is highly recommended to use
positive (instead of zero) weights to account for the influence of every element.
The weights have a strong impact on the clustering result.

plot a logical. If TRUE, the histogram will be plotted.
xlab a character string. The x-axis label for the plot.
wlab a character string. The weight-axis label for the plot. It is the vertical axis to the

right of the plot.
main a character string. The title for the plot.
col a character string. The fill color of the histogram bars.
border a character string. The color of the histogram bar borders.
lwd a numeric value. The line width of the border of the histogram bars
col.stick a character string. The color of the sticks above the x-axis. See Details.
lwd.stick a numeric value. The line width of the sticks above the x-axis. See Details.
add.sticks a logical. If TRUE (default), the sticks representing the data will be added to the

bottom of the histogram. Otherwise, sticks are not plotted.
style a character string. The style of the adaptive histogram. See details.
skip.empty.bin.color

a logical. If TRUE (default), an empty bin (invisible) will be assigned the same
bar color with the next bin. This is useful when all provided colors are to be
used for non-empty bins. If FALSE, each bin will be assigned a bar color from
col. A value of TRUE will coordinate the bar and stick colors.

... additional arguments to be passed to hist or plot.histogram.

Details

The histogram is by default plotted using the plot.histogram method. The plot can be optionally
disabled with the plot=FALSE argument. The original input data are shown as sticks just above the
horizontal axis.

If the breaks argument is not specified, the number of histogram bins is the optimal number of
clusters estimated using Bayesian information criterion evaluated on Gaussian mixture models fitted
to the input data in x.

If not provided with the breaks argument, breaks in the histogram are derived from clusters identi-
fied by optimal univariate clustering (Ckmeans.1d.dp) in two styles. With the default "discontinuous"
style, the bin width of each bar is determined according to a data-adaptive rule; the "midpoints"
style uses the midpoints of cluster border points to determine the bin-width. For clustered data, the
"midpoints" style generates bins that are too wide to capture the cluster patterns. In contrast, the
"discontinuous" style is more adaptive to the data by allowing some bins to be empty making the
histogram bars discontinuous.

6 ahist

Value

An object of class histogram defined in hist. It has a S3 plot method plot.histogram.

Author(s)

Joe Song

See Also

hist in package graphics.

Examples

Example 1: plot an adaptive histogram from data generated by
a Gaussian mixture model with three components
x <- c(rnorm(40, mean=-2, sd=0.3),

rnorm(45, mean=1, sd=0.1),
rnorm(70, mean=3, sd=0.2))

ahist(x, col="lightblue", sub=paste("n =", length(x)),
col.stick="salmon", lwd=2,
main=paste("Example 1. Gaussian mixture model with 3 components",

"(one bin per component)", sep="\n"))

Example 2: plot an adaptive histogram from data generated by
a Gaussian mixture model with three components using a given
number of bins
ahist(x, k=9, col="lavender", col.stick="salmon",

sub=paste("n =", length(x)), lwd=2,
main=paste("Example 2. Gaussian mixture model with 3 components",

"(on average 3 bins per component)", sep="\n"))

Example 3: The DNase data frame has 176 rows and 3 columns of
data obtained during development of an ELISA assay for the
recombinant protein DNase in rat serum.

data(DNase)
res <- Ckmeans.1d.dp(DNase$density)
kopt <- length(res$size)
ahist(res, data=DNase$density, col=rainbow(kopt),

col.stick=rainbow(kopt)[res$cluster],
sub=paste("n =", length(x)), border="transparent",
xlab="Optical density of protein DNase",
main="Example 3. Elisa assay of DNase in rat serum")

Example 4: Add sticks to histograms with the R provided
hist() function.

ahist(DNase$density, breaks="Sturges", col="palegreen",
add.sticks=TRUE, col.stick="darkgreen",
main=paste("Example 4. Elisa assay of DNase in rat serum",

MultiChannel.WUC 7

"(Equal width bins)", sep="\n"),
xlab="Optical density of protein DNase")

Example 5: Weighted adatpive histograms

x <- sort(c(rnorm(40, mean=-2, sd=0.3),
rnorm(45, mean=2, sd=0.1),
rnorm(70, mean=4, sd=0.2)))

y <- (1 + sin(0.10 * seq_along(x))) * (x-1)^2

ahist(x, weight=y, sub=paste("n =", length(x)),
col.stick="forestgreen", lwd.stick=0.25, lwd=2,
main="Example 5. Weighted adaptive histogram")

Example 6: Cluster data with repetitive elements

ahist(c(1,1,1,1, 3,4,4, 6,6,6), k=c(2,4), col="gray",
lwd=2, lwd.stick=6, col.stick="chocolate",
main=paste("Example 6. Adaptive histogram of",

"repetitive elements", sep="\n"))

MultiChannel.WUC Optimal Multi-channel Weighted Univariate Clustering

Description

Perform optimal multi-channel weighted univariate k-means clustering in linear time.

Usage

MultiChannel.WUC(x, y, k=c(1,9))

Arguments

x a numeric vector of data to be clustered. All NA elements must be removed
from x before calling this function. The function will run faster on sorted x (in
non-decreasing order) than an unsorted input.

y a numeric matrix of non-negative weights for each element in x. Columns of
the matrix are channels. It is highly recommended to use positive (instead of
zero) weights to account for the influence of every element. Weights strongly
influence clustering results. When the number of clusters k is given as a range,
the weights should be linearly scaled to sum up to the observed sample size.

k either an exact integer number of clusters, or a vector of length two specifying
the minimum and maximum numbers of clusters to be examined. The default
is c(1,9). When k is a range, the actual number of clusters is determined by
Bayesian information criterion (BIC).

8 MultiChannel.WUC

Details

MultiChannel.WUC minimizes the total weighted within-cluster sum of squared distance (Zhong
2019). It uses the SMAWK algorithm (Aggarwal et al. 1987) with modified data structure to speed
up the dynamic programming to linear runtime. The method selects an optimal k based on an
approximate Gaussian mixture model using the BIC.

Value

A list object containing the following components:

cluster a vector of clusters assigned to each element in x. Each cluster is indexed by an
integer from 1 to k.

centers a numeric vector of the (weighted) means for each cluster.

withinss a numeric vector of the (weighted) within-cluster sum of squares for each cluster.

size a vector of the (weighted) number of elements in each cluster.

totss total sum of (weighted) squared distances between each element and the sample
mean. This statistic is not dependent on the clustering result.

tot.withinss total sum of (weighted) within-cluster squared distances between each element
and its cluster mean. This statistic is minimized given the number of clusters.

betweenss sum of (weighted) squared distances between each cluster mean and sample
mean. This statistic is maximized given the number of clusters.

xname a character string. The actual name of the x argument.

yname a character string. The actual name of the y argument.

Author(s)

Hua Zhong and Mingzhou Song

References

Aggarwal A, Klawe MM, Moran S, Shor P, Wilber R (1987). “Geometric applications of a matrix-
searching algorithm.” Algorithmica, 2(1-4), 195–208. doi:10.1007/BF01840359.

Zhong H (2019). Model-free Gene-to-zone Network Inference of Molecular Mechanisms in Bi-
ology. Ph.D. thesis, Department of Computer Science, New Mexico State University, Las Cruces,
NM, USA.

Examples

x <- sample(x = c(1:100), size = 20, replace = TRUE)
Y <- matrix(sample(x = c(1:100), size = 40, replace = TRUE), ncol=2, nrow=length(x))

res <- MultiChannel.WUC(x = x, y = Y, k = c(1:10))
plot(res)

n <- c(20, 20, 20)
x <- c(rnorm(n[1], mean=-6),

https://doi.org/10.1007/BF01840359

plot.Ckmeans.1d.dp 9

rnorm(n[2], mean=0),
rnorm(n[3], mean=6))

Y <- matrix(c(
rep(c(1,0,0), times=n[1]),
rep(c(0,1,0), times=n[2]),
rep(c(0,0,1), times=n[3])

), byrow=TRUE, nrow=length(x))

res <- MultiChannel.WUC(x = x, y = Y, k = 3)

opar <- par(mar=c(3,3,2.5,1), mgp=c(1.5,0.5,0))
plot(res)
par(opar)

plot.Ckmeans.1d.dp Plot Optimal Univariate Clustering Results

Description

Plot optimal univariate clustering results returned from Ckmeans.1d.dp.

Usage

S3 method for class 'Ckmeans.1d.dp'
plot(x, xlab=NULL, ylab=NULL, main=NULL,

sub=NULL, col.clusters=NULL, ...)
S3 method for class 'Ckmedian.1d.dp'
plot(x, xlab=NULL, ylab=NULL, main=NULL,

sub=NULL, col.clusters=NULL, ...)

Arguments

x an object of class as returned by Ckmeans.1d.dp or Ckmedian.1d.dp.

xlab a character string. The x-axis label for the plot.

ylab a character string. The x-axis label for the plot.

main a character string. The title for the plot.

sub a character string. The subtitle for the plot.

col.clusters a vector of colors, defined either by integers or by color names. If the length is
shorter than the number of clusters, the colors will be reused.

... arguments passed to plot function in package graphics.

Details

The functions plot.Ckmeans.1d.dp and plot.Ckmedian.1d.dp visualize the input data as sticks
whose heights are the weights. They use different colors to indicate clusters.

10 plot.Cksegs.1d.dp

Value

An object of class "Ckmeans.1d.dp" or "Ckmedian.1d.dp" defined in Ckmeans.1d.dp.

Author(s)

Joe Song

Examples

Example: clustering data generated from a Gaussian
mixture model of three components
x <- c(rnorm(50, mean=-1, sd=0.3),

rnorm(50, mean=1, sd=0.3),
rnorm(50, mean=3, sd=0.3))

res <- Ckmeans.1d.dp(x)
plot(res)

y <- (rnorm(length(x)))^2
res <- Ckmeans.1d.dp(x, y=y)
plot(res)

res <- Ckmedian.1d.dp(x)
plot(res)

plot.Cksegs.1d.dp Plot Optimal Univariate Segmentation Results

Description

Plot optimal univariate segmentation results returned from Cksegs.1d.dp.

Usage

S3 method for class 'Cksegs.1d.dp'
plot(x, xlab=NULL, ylab=NULL, main=NULL,

sub=NULL, col.clusters=NULL, ...)

Arguments

x an object of class as returned by Cksegs.1d.dp.
xlab a character string. The x-axis label for the plot.
ylab a character string. The x-axis label for the plot.
main a character string. The title for the plot.
sub a character string. The subtitle for the plot.
col.clusters a vector of colors, defined either by integers or by color names. If the length is

shorter than the number of clusters, the colors will be reused.
... arguments passed to plot function in package graphics.

plot.MultiChannelClusters 11

Details

The function plot.Cksegs.1d.dp shows segments as horizontal lines from the univariate segmen-
tation results obtained from function Cksegs.1d.dp. It uses different colors to indicate segments.

Value

An object of class "Cksegs.1d.dp" defined in Cksegs.1d.dp.

Author(s)

Joe Song

References

Wang, H. and Song, M. (2011) Ckmeans.1d.dp: optimal k -means clustering in one dimension by
dynamic programming. The R Journal 3(2), 29–33. Retrieved from https://journal.r-project.
org/archive/2011-2/RJournal_2011-2_Wang+Song.pdf

Examples

Example: clustering data generated from a Gaussian
mixture model of three components
x <- c(rnorm(50, mean=-1, sd=0.3),

rnorm(50, mean=1, sd=0.3),
rnorm(50, mean=3, sd=0.3))

y <- x^3
res <- Cksegs.1d.dp(y, x=x)
plot(res, lwd=2)

plot.MultiChannelClusters

Plot Multi-Channel Clustering Results

Description

Plot multi-channel clustering results returned from MultiChannel.WUC.

Usage

S3 method for class 'MultiChannelClusters'
plot(x, xlab=NULL, ylab=NULL, main=NULL,

sub=NULL, col.clusters=NULL, ...)

https://journal.r-project.org/archive/2011-2/RJournal_2011-2_Wang+Song.pdf
https://journal.r-project.org/archive/2011-2/RJournal_2011-2_Wang+Song.pdf

12 plotBIC

Arguments

x an object of class as returned by MultiChannel.WUC.

xlab a character string. The x-axis label for the plot.

ylab a character string. The x-axis label for the plot.

main a character string. The title for the plot.

sub a character string. The subtitle for the plot.

col.clusters a vector of colors, defined either by integers or by color names. If the length is
shorter than the number of clusters, the colors will be reused.

... arguments passed to plot function in package graphics.

Details

The function visualizes the input data as sticks whose heights are the weights. Colors indicate
clusters. See MultiChannel.WUC for examples.

Value

An object of class "MultiChannelClusters" defined in MultiChannel.WUC.

Author(s)

Joe Song

plotBIC Plot Bayesian Information Criterion as a Function of Number of Clus-
ters

Description

Plot Bayesian information criterion (BIC) as a function of the number of clusters obtained from
optimal univariate clustering results returned from Ckmeans.1d.dp. The BIC normalized by sample
size (BIC/n) is shown.

Usage

plotBIC(
ck, xlab="Number of clusters k",
ylab = "BIC/n", type="b",
sub=paste("n =", length(ck$cluster)),
main=paste("Bayesian information criterion",

"(normalized by sample size)", sep="\n"),
...

)

plotBIC 13

Arguments

ck an object of class Ckmeans.1d.dp returned by Ckmeans.1d.dp.

xlab a character string. The x-axis label for the plot.

ylab a character string. The x-axis label for the plot.

type the type of plot to be drawn. See plot.

main a character string. The title for the plot.

sub a character string. The subtitle for the plot.

... arguments passed to plot function in package graphics.

Details

The function visualizes the input data as sticks whose heights are the weights. It uses different colors
to indicate optimal k -means clusters. The method to calcualte BIC based on Gaussian mixture
models estimated on a univariate clustering is described in (Song and Zhong 2020).

Value

An object of class "Ckmeans.1d.dp" defined in Ckmeans.1d.dp.

Author(s)

Joe Song

References

Song M, Zhong H (2020). “Efficient weighted univariate clustering maps outstanding dysregulated
genomic zones in human cancers.” Bioinformatics, 36(20), 5027–5036. doi:10.1093/bioinformatics/
btaa613.

Examples

Example: clustering data generated from a Gaussian mixture
model of two components
x <- rnorm(50, mean=-1, sd=0.3)
x <- append(x, rnorm(50, mean=1, sd=0.3))
res <- Ckmeans.1d.dp(x)
plotBIC(res)

y <- (rnorm(length(x)))^2
res <- Ckmeans.1d.dp(x, y=y)
plotBIC(res)

https://doi.org/10.1093/bioinformatics/btaa613
https://doi.org/10.1093/bioinformatics/btaa613

14 print.Ckmeans.1d.dp

print.Ckmeans.1d.dp Print Optimal Univariate Clustering Results

Description

Print optimal univariate clustering results obtained from Ckmeans.1d.dp or Ckmedian.1d.dp.

Usage

S3 method for class 'Ckmeans.1d.dp'
print(x, ...)
S3 method for class 'Ckmedian.1d.dp'
print(x, ...)

Arguments

x object returned by calling Ckmeans.1d.dp or Cksegs.1d.dp.

... arguments passed to print function.

Details

Function print.Ckmeans.1d.dp and print.Ckmedian.1d.dp prints the maximum ratio of between-
cluster sum of squares to total sum of squares unless all input elements are zero. The ratio is an
indicator of maximum achievable clustering quality given the number of clusters: 100% for a per-
fect clustering and 0% for no cluster patterns.

Value

An object of class "Ckmeans.1d.dp" or "Ckmedian.1d.dp" as defined in Ckmeans.1d.dp.

Author(s)

Joe Song and Haizhou Wang

Examples

Example: clustering data generated from a Gaussian
mixture model of two components
x <- c(rnorm(15, mean=-1, sd=0.3),

rnorm(15, mean=1, sd=0.3))
res <- Ckmeans.1d.dp(x)
print(res)

res <- Ckmedian.1d.dp(x)
print(res)

y <- (rnorm(length(x)))^2
res <- Ckmeans.1d.dp(x, y=y)

print.Cksegs.1d.dp 15

print(res)

res <- Ckmedian.1d.dp(x)
print(res)

print.Cksegs.1d.dp Print Optimal Univariate Segmentation Results

Description

Print optimal univariate segmentation results obtained from Cksegs.1d.dp.

Usage

S3 method for class 'Cksegs.1d.dp'
print(x, ...)

Arguments

x object returned by calling Cksegs.1d.dp.

... arguments passed to print function.

Details

Function print.Cksegs.1d.dp prints the maximum ratio of between-cluster sum of squares to total
sum of squares unless all input elements are zero. The ratio is an indicator of maximum achievable
clustering quality given the number of clusters: 100% for a perfect clustering and 0% for no cluster
patterns.

Value

An object of class "Cksegs.1d.dp" as defined in Cksegs.1d.dp.

Author(s)

Joe Song

Examples

Example: clustering data generated from a Gaussian
mixture model of two components
x <- c(rnorm(15, mean=-1, sd=0.3),

rnorm(15, mean=1, sd=0.3))

y <- x^3
res <- Cksegs.1d.dp(y, x=x)
print(res, lwd=2)

16 Univariate Clustering

Univariate Clustering Optimal (Weighted) Univariate Clustering

Description

Perform optimal univariate k-means or k-median clustering in linear (fastest), loglinear, or quadratic
(slowest) time.

Usage

Ckmeans.1d.dp(x, k=c(1,9), y=1,
method=c("linear", "loglinear", "quadratic"),
estimate.k=c("BIC", "BIC 3.4.12"))

Ckmedian.1d.dp(x, k=c(1,9), y=1,
method=c("linear", "loglinear", "quadratic"),
estimate.k=c("BIC", "BIC 3.4.12"))

Arguments

x a numeric vector of data to be clustered. All NA elements must be removed
from x before calling this function. The function will run faster on sorted x (in
non-decreasing order) than an unsorted input.

k either an exact integer number of clusters, or a vector of length two specifying
the minimum and maximum numbers of clusters to be examined. The default
is c(1,9). When k is a range, the actual number of clusters is determined by
Bayesian information criterion.

y a value of 1 (default) to specify equal weights of 1 for each element in x, or a nu-
meric vector of unequal non-negative weights for each element in x. It is highly
recommended to use positive (instead of zero) weights to account for the influ-
ence of every element. The weights have a strong impact on the clustering result.
When the number of clusters k is given as a range, the weights should be linearly
scaled to sum up to the observed sample size. Currently, Ckmedian.1d.dp only
works with an equal weight of 1.

method a character string to specify the speedup method to the original cubic runtime
dynamic programming. The default is "linear". All methods generate the
same optimal results but differ in runtime or memory usage. See Details.

estimate.k a character string to specify the method to estimate optimal k. This argument is
effective only when a range for k is provided. The default is "BIC". See Details.

Details

Ckmean.1d.dp minimizes unweighted or weighted within-cluster sum of squared distance (L2).

Ckmedian.1d.dp minimizes within-cluster sum of distance (L1). Only unweighted solution is im-
plemented and guarantees optimality.

Univariate Clustering 17

In contrast to the heuristic k -means algorithms implemented in function kmeans, this function op-
timally assigns elements in numeric vector x into k clusters by dynamic programming (Wang and
Song 2011; Song and Zhong 2020). It minimizes the total of within-cluster sums of squared dis-
tances (withinss) between each element and its corresponding cluster mean. When a range is pro-
vided for k, the exact number of clusters is determined by Bayesian information criterion (Song and
Zhong 2020). Different from the heuristic k -means algorithms whose results may be non-optimal or
change from run to run, the result of Ckmeans.1d.dp is guaranteed to be optimal and reproducible,
and its advantage in efficiency and accuracy over heuristic k -means methods is most pronounced at
large k .

The estimate.k argument specifies the method to select optimal k based on the Gaussian mix-
ture model using the Bayesian information criterion (BIC). When estimate.k="BIC", it effec-
tively deals with variance estimation for a cluster with identical values. When estimate.k="BIC
3.4.12", it uses the code in version 3.4.12 and earlier to estimate k.

The method argument specifies one of three options to speed up the original dynamic programming
taking a runtime cubic in sample size n . The default "linear" option, giving a total runtime of
O(n lg n + kn) or O(kn) (if x is already sorted in ascending order) is the fastest option but uses
the most memory (still O(kn)) (Song and Zhong 2020); the "loglinear" option, with a runtime
of O(kn lg n), is slightly slower but uses the least memory (Song and Zhong 2020); the slowest
"quadratic" option (Wang and Song 2011), with a runtime of O(kn2), is provided for the purpose
of testing on small data sets.

When the sample size n is too large to create two k×n dynamic programming matrices in memory,
we recommend the heuristic solutions implemented in the kmeans function in package stats.

Value

An object of class "Ckmeans.1d.dp" or "Ckmedian.1d.dp". It is a list containing the following
components:

cluster a vector of clusters assigned to each element in x. Each cluster is indexed by an
integer from 1 to k.

centers a numeric vector of the (weighted) means for each cluster.

withinss a numeric vector of the (weighted) within-cluster sum of squares for each cluster.

size a vector of the (weighted) number of elements in each cluster.

totss total sum of (weighted) squared distances between each element and the sample
mean. This statistic is not dependent on the clustering result.

tot.withinss total sum of (weighted) within-cluster squared distances between each element
and its cluster mean. This statistic is minimized given the number of clusters.

betweenss sum of (weighted) squared distances between each cluster mean and sample
mean. This statistic is maximized given the number of clusters.

xname a character string. The actual name of the x argument.

yname a character string. The actual name of the y argument.

Each class has a print and a plot method, which are described along with print.Ckmeans.1d.dp
and plot.Ckmeans.1d.dp.

18 Univariate Clustering

Author(s)

Joe Song and Haizhou Wang

References

Song M, Zhong H (2020). “Efficient weighted univariate clustering maps outstanding dysregulated
genomic zones in human cancers.” Bioinformatics, 36(20), 5027–5036. doi:10.1093/bioinformatics/
btaa613.

Wang H, Song M (2011). “Ckmeans.1d.dp: Optimal k-means clustering in one dimension by dy-
namic programming.” The R Journal, 3(2), 29–33. doi:10.32614/RJ2011015.

See Also

ahist, plot.Ckmeans.1d.dp, print.Ckmeans.1d.dp in this package.

kmeans in package stats that implements several heuristic k-means algorithms.

Examples

Ex. 1 The number of clusters is provided.
Generate data from a Gaussian mixture model of three components
x <- c(rnorm(50, sd=0.2), rnorm(50, mean=1, sd=0.3), rnorm(100,

mean=-1, sd=0.25))
Divide x into 3 clusters
k <- 3

result <- Ckmedian.1d.dp(x, k)

plot(result, main="Optimal univariate k-median given k")

result <- Ckmeans.1d.dp(x, k)

plot(result, main="Optimal univariate k-means given k")

plot(x, col=result$cluster, pch=result$cluster, cex=1.5,
main="Optimal univariate k-means clustering given k",
sub=paste("Number of clusters given:", k))

abline(h=result$centers, col=1:k, lty="dashed", lwd=2)
legend("bottomleft", paste("Cluster", 1:k), col=1:k, pch=1:k,

cex=1.5, bty="n")

Ex. 2 The number of clusters is determined by Bayesian
information criterion
Generate data from a Gaussian mixture model of three components
x <- c(rnorm(50, mean=-3, sd=1), rnorm(50, mean=0, sd=.5),

rnorm(50, mean=3, sd=1))
Divide x into k clusters, k automatically selected (default: 1~9)

result <- Ckmedian.1d.dp(x)

plot(result, main="Optimal univariate k-median with k estimated")

https://doi.org/10.1093/bioinformatics/btaa613
https://doi.org/10.1093/bioinformatics/btaa613
https://doi.org/10.32614/RJ-2011-015

Univariate Segmentation 19

result <- Ckmeans.1d.dp(x)

plot(result, main="Optimal univariate k-means with k estimated")

k <- max(result$cluster)
plot(x, col=result$cluster, pch=result$cluster, cex=1.5,

main="Optimal univariate k-means clustering with k estimated",
sub=paste("Number of clusters is estimated to be", k))

abline(h=result$centers, col=1:k, lty="dashed", lwd=2)
legend("topleft", paste("Cluster", 1:k), col=1:k, pch=1:k,

cex=1.5, bty="n")

Ex. 3 Segmenting a time course using optimal weighted
univariate clustering
n <- 160
t <- seq(0, 2*pi*2, length=n)
n1 <- 1:(n/2)
n2 <- (max(n1)+1):n
y1 <- abs(sin(1.5*t[n1]) + 0.1*rnorm(length(n1)))
y2 <- abs(sin(0.5*t[n2]) + 0.1*rnorm(length(n2)))
y <- c(y1, y2)

w <- y^8 # stress the peaks
res <- Ckmeans.1d.dp(t, k=c(1:10), w)
plot(res)
plot(t, w, main = "Time course weighted k-means",

col=res$cluster, pch=res$cluster,
xlab="Time t", ylab="Transformed intensity w",
type="h")

abline(v=res$centers, col="chocolate", lty="dashed")
text(res$centers, max(w) * .95, cex=0.5, font=2,

paste(round(res$size / sum(res$size) * 100), "/ 100"))

Univariate Segmentation

Optimal Univariate Segmentation

Description

Perform optimal univariate k-segmentation.

Usage

Cksegs.1d.dp(y, k=c(1,9), x=seq_along(y),
method=c("quadratic", "linear", "loglinear"),
estimate.k=c("BIC", "BIC 3.4.12"))

20 Univariate Segmentation

Arguments

y a numeric vector of y values. Values can be negative.

k either an exact integer number of clusters, or a vector of length two specifying
the minimum and maximum numbers of clusters to be examined. The default
is c(1,9). When k is a range, the actual number of clusters is determined by
Bayesian information criterion.

x an optional numeric vector of data to be clustered. All NA elements must be
removed from x before calling this function. The function will run faster on
sorted x (in non-decreasing order) than an unsorted input.

method a character string to specify the speedup method to the original cubic runtime
dynamic programming. The default is "quadratic", which generates optimal
results. The other options do not guarantee optimal solution and differ in runtime
or memory usage. See Details.

estimate.k a character string to specify the method to estimate optimal k. The default is
"BIC". See Details.

Details

Cksegs.1d.dp minimizes within-cluster sum of squared distance on y. It offers optimal piece-
wise constant approximation of y within clusters of x. Only method="quadratic" guarantees
optimality. The "linear" and "loglinear" options are faster but not always optimal and are provided
for comparison purposes.

The Bayesian information criterion (BIC) method to select optimal k is updated to deal with du-
plicates in the data. Otherwise, the estimated k would be the same with previous versions. Set
estimate.k="BIC" to use the latest method; use estimate.k="BIC 3.4.12" to use the BIC method
in version 3.4.12 or earlier to estimated k from the given range. This option is effective only when
a range for k is provided.

method specifies one of three options to speed up the original dynamic programming taking a run-
time cubic in sample size n . The default "quadratic" option, with a runtime of O(kn2), guarantees
optimality. The next two options do not guarantee optimality. The "linear" option, giving a total
runtime of O(n lg n+ kn) or O(kn) (if x is already sorted in ascending order) is the fastest option
but uses the most memory (still O(kn)); the "loglinear" option, with a runtime of O(kn lg n), is
slightly slower but uses the least memory.

Value

An object of class "Cksegs.1d.dp". It is a list containing the following components:

cluster a vector of clusters assigned to each element in x. Each cluster is indexed by an
integer from 1 to k.

centers a numeric vector of the (weighted) means for each cluster.

withinss a numeric vector of the (weighted) within-cluster sum of squares for each cluster.

size a vector of the (weighted) number of elements in each cluster.

totss total sum of (weighted) squared distances between each element and the sample
mean. This statistic is not dependent on the clustering result.

Univariate Segmentation 21

tot.withinss total sum of (weighted) within-cluster squared distances between each element
and its cluster mean. This statistic is minimized given the number of clusters.

betweenss sum of (weighted) squared distances between each cluster mean and sample
mean. This statistic is maximized given the number of clusters.

xname a character string. The actual name of the x argument.

yname a character string. The actual name of the y argument.

The class has a print and a plot method: print.Cksegs.1d.dp and plot.Cksegs.1d.dp.

Author(s)

Joe Song

See Also

plot.Cksegs.1d.dp and print.Cksegs.1d.dp.

Examples

Ex 1. Segmenting by y

y <- c(1,1,1,2,2,2,4,4,4,4)

res <- Cksegs.1d.dp(y, k=c(1:10))

main <- "k-segs giving 3 clusters\nsucceeded in finding segments"

opar <- par(mfrow=c(1,2))

plot(res, main=main, xlab="x")

res <- Ckmeans.1d.dp(x=seq_along(y), k=c(1:10), y)
main <- "Weighted k-means giving 1 cluster\nfailed to find segments"

plot(res, main=main, xlab="x")

par(opar)

Ex 2. Segmenting by y

y <- c(1,1,1.1,1, 2,2.5,2, 4,5,4,4)
res <- Cksegs.1d.dp(y, k=c(1:10))
plot(res, xlab="x")

Ex 3. Segmenting a sinusoidal curve by y
x <- 1:125
y <- sin(x * .2)
res.q <- Cksegs.1d.dp(y, k=8, x=x)
plot(res.q, lwd=3, xlab="x")

Ex 4. Segmenting by y

22 Univariate Segmentation

y <- rep(c(1,-3,4,-2), each=20)
y <- y + 0.5*rnorm(length(y))
k <- 1:10
res.q <- Cksegs.1d.dp(y, k=k, method="quadratic")
main <- paste("Cksegs (method=\"quadratic\"):\ntot.withinss =",

format(res.q$tot.withinss, digits=4), "BIC =",
format(res.q$BIC[length(res.q$size)], digits=4),
"\nGUARANTEE TO BE OPTIMAL")

plot(res.q, main=main, xlab="x")
res.l <- Cksegs.1d.dp(y, k=k, method="linear")
main <- paste("Cksegs (method=\"linear\"):\ntot.withinss =",

format(res.l$tot.withinss, digits=4), "BIC =",
format(res.l$BIC[length(res.l$size)], digits=4),
"\nFAST BUT MAY NOT BE OPTIMAL")

plot(res.l, main=main, xlab="x")
res.g <- Cksegs.1d.dp(y, k=k, method="loglinear")
main <- paste("Cksegs (method=\"loglinear\"):\ntot.withinss =",

format(res.g$tot.withinss, digits=4), "BIC =",
format(res.g$BIC[length(res.g$size)], digits=4),
"\nFAST BUT MAY NOT BE OPTIMAL")

plot(res.g, main=main, xlab="x")

Index

∗ cluster
ahist, 4
Ckmeans.1d.dp-package, 2
MultiChannel.WUC, 7
plot.Ckmeans.1d.dp, 9
plot.Cksegs.1d.dp, 10
plot.MultiChannelClusters, 11
plotBIC, 12
print.Ckmeans.1d.dp, 14
print.Cksegs.1d.dp, 15
Univariate Clustering, 16
Univariate Segmentation, 19

∗ distribution
ahist, 4
MultiChannel.WUC, 7
plot.Ckmeans.1d.dp, 9
plot.Cksegs.1d.dp, 10
plot.MultiChannelClusters, 11

∗ hplot
ahist, 4
plot.Ckmeans.1d.dp, 9
plot.Cksegs.1d.dp, 10
plot.MultiChannelClusters, 11
plotBIC, 12

∗ package
Ckmeans.1d.dp-package, 2

∗ print
print.Ckmeans.1d.dp, 14
print.Cksegs.1d.dp, 15

∗ univar
ahist, 4
Ckmeans.1d.dp-package, 2
plot.Ckmeans.1d.dp, 9
plot.Cksegs.1d.dp, 10
plotBIC, 12
print.Ckmeans.1d.dp, 14
print.Cksegs.1d.dp, 15
Univariate Clustering, 16
Univariate Segmentation, 19

ahist, 3, 4, 18

Ckmeans.1d.dp, 3, 5, 9, 10, 13, 14
Ckmeans.1d.dp (Univariate Clustering),

16
Ckmeans.1d.dp-package, 2
Ckmedian.1d.dp, 9
Ckmedian.1d.dp (Univariate Clustering),

16
Cksegs.1d.dp, 10, 11, 15
Cksegs.1d.dp (Univariate Segmentation),

19

graphics, 5, 6

hist, 5, 6

kmeans, 4, 17, 18

MultiChannel.WUC, 7, 12

plot, 9, 10, 12, 13
plot.Ckmeans.1d.dp, 3, 9, 17, 18
plot.Ckmedian.1d.dp

(plot.Ckmeans.1d.dp), 9
plot.Cksegs.1d.dp, 10, 21
plot.histogram, 5, 6
plot.MultiChannelClusters, 11
plotBIC, 3, 12
print, 14, 15
print.Ckmeans.1d.dp, 3, 14, 17, 18
print.Ckmedian.1d.dp

(print.Ckmeans.1d.dp), 14
print.Cksegs.1d.dp, 15, 21

stats, 4, 17, 18

Univariate Clustering, 16
Univariate Segmentation, 19

23

	Ckmeans.1d.dp-package
	ahist
	MultiChannel.WUC
	plot.Ckmeans.1d.dp
	plot.Cksegs.1d.dp
	plot.MultiChannelClusters
	plotBIC
	print.Ckmeans.1d.dp
	print.Cksegs.1d.dp
	Univariate Clustering
	Univariate Segmentation
	Index

